NGSS Grade 7 Standards Conceptual Flow Map

*conceptual flow map is a working draft and subject to revisions throughout the year

Unit/Estimated Dates	Phenomena/	Standards
	Topic	
Unit 1	 Competition in Ecosystems 	MS-LS2-1: Analyze and interpret data to provide evidence for
	 Organism Interactions in 	the effects of resource availability on organisms and populations of organisms in an ecosystem.
Organisms and	Ecosystems	MS-LS2-1: Analyze and interpret data to provide evidence for
9	 Human Dependence on Natural 	the effects of resource availability on organisms and populations of organisms in an ecosystem.
Nonliving Things	Resources	MS-ESS3-1: Construct a scientific explanation based on
	 Structure of Matter 	evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and
are Made of	 Changes in Energy on the 	current geoscience processes.
	Molecular Level	MS-PS1-1: The student is expected to develop models to describe the atomic composition of simple molecules and
Atoms	 Heat and Matter 	extended structures.
71101110		MS-PS1-4: Develop a model that predicts and describes
		changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
Dates		MS-PS1-4: Develop a model that predicts and describes
Aug-Sep		changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
		5,

Unit 2

Matter Cycles and Energy Flows through Organisms and Rocks

Dates Oct-Nov

- Characteristics of Chemical Reactions
- Physical and Chemical Properties
- Modeling Conservation of Mass
- Thermal Energy in Chemical Reactions
- Introduction to Photosynthesis
- Energy Flow in Organisms
- Earth Materials

MS-PS1-2: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

MS-PS1-2: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

MS-PS1-5: Develop and use a model to describe how the total number of atoms does not change in a chemical reaction, and thus mass is conserved.

MS-PS1-6: Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

MS-ETS1-3: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ETS1-4: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

MS-LS1-6: Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

MS-LS1-7: Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

MS-ESS2-1: Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.

Relationships in Ecosystems

MS-LS2-2: Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Natural Processes and Human Activities Shape Earth's Resources and Ecosystems

Dates Dec-Feb

- Flow of Energy in Ecosystems
- Plate Tectonics
- Seafloor Spreading
- Organism Interactions in Ecosystems (mentioned)
- Competition in Ecosystems (mentioned)
- Human Dependence on Natural Resources (mentioned)
- Characteristics of Chemical Reactions (mentioned)
- Modeling Conservation of Mass (mentioned)

MS-LS2-3: Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

MS-ESS2-3: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

MS-ESS2-3: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

MS-LS2-1: Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

MS-LS2-1: Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

MS-ESS3-1: Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

MS-PS1-2: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

MS-PS1-5: Develop and use a model to describe how the total number of atoms does not change in a chemical reaction, and thus mass is conserved.

Sustaining

- Dynamic Nature of Ecosystems
- Ecosystem Biodiversity
- Geoscience Processes

MS-LS2-4: Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

MS-LS2-5: Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

Biodiversity and Ecosystem Services in a Changing World

• Weathering and Erosion

Natural Hazard Predictions

Synthetic Materials

Dates Mar-Jun MS-ETS1-2: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ESS2-2: Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.

MS-ESS2-2: Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.

MS-ESS3-2 Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. MS-PS1-3: Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.